Химера Амстердама: в чем проблема возобновляемых источников энергии
важное 19 июля 2018, 11:21

Солнечные батареи считаются источниками «зеленой» энергии. Однако на темное время для запасания энергии они используют аккумуляторы, содержащие литий и кобальт, которые до сих пор не умеют безотходно перерабатывать

Стадион Johan Cruijff ArenA в Амстердаме оборудовали солнечными батареями и аккумуляторами для накопления энергии. Система способна накопить столько энергии, чтобы полностью обеспечить питание стадиона ArenA в течение одного часа во время масштабных мероприятий, то есть, когда потребление энергии достигает максимума, распределяясь на свет, звук, системы обеспечения безопасности и так далее. В обычном режиме — и того дольше.

Вторая жизнь аккумуляторов

Это не просто очередной проект с применением солнечных батарей, а эксперимент нескольких крупных международных компаний. Идея проста. В электромобилях аккумуляторы имеют значительную емкость и когда их характеристики падают, их еще можно использовать для других целей. В данном случае используются элементы из аккумуляторов электромобиля Nissan Leaf, которые подлежат замене по достижении пробега в 160 000 км или по факту снижения емкости на 20%. Инженеры решили, что после этого они еще отлично подойдут для запасания энергии в менее жестких условиях.

Американская машиностроительная корпорация Eaton, производящая автокомплектующие и компоненты для авиационной промышленности, разработала саму систему сохранения энергии — ESS (Energy Storage System). Nissan предоставила новые и отслужившие свой срок элементы аккумуляторов электромобилей и свою технологию хранения энергии xStorage. Немецкая The Mobility House предоставила интеллектуальное программное обеспечение для управления зарядом и разрядом этих батарей, а нидерландская строительная компания BAM спроектировала помещение для батарей и интегрировала ESS в уже существующую энергосеть стадиона.

Построенная компаниями система обеспечивает накопление и использование стадионом солнечной энергией. Ключевой элемент ESS — установленная на крыше система солнечных батарей, состоящая из 4200 фотоэлектрических модулей, номинальная мощность которых — 3 МВт. Для хранения энергии используется 590 батарей ESS, в которых использованы «пальчиковые» элементы из 148 аккумуляторов электромобилей Nissan Leaf. Общая емкость системы 2,8 МВт*ч, что хватило бы для зарядки 500 000 iPhone.

Весь проект рассчитан на 10 лет — таков срок службы аккумуляторов Nissan. Планируется, что за все это время удастся сократить выбросы углекислого газа в атмосферу на 117 000 тонн. Во сколько проект обошелся Амстердаму — неизвестно, но вице-мэр заявил, что за эти 10 лет город рассчитывает окупить затраты.

Обратная сторона солнечной энергетики

У Nissan пока нет ответа на вопрос, что делать с этими аккумуляторами дальше. По словам представителей компании, разработка технологии дальнейшей утилизации и/или применения данных батарей находится в стадии активной разработки. Но это ключевой вопрос всей «зеленой» энергетики: мы можем улучшить экологию с помощью внедрения солнечных батарей, однако в основе этих батарей будут литий и кобальт.

Эти металлы содержатся и в организме человека, и в природе, но в микродозах. А вот их добыча и последующая переработка на сегодняшний день порождают серьезные проблемы, они способны отравить большие территории.

Литий — наиболее легкий метал, третий элемент таблицы Менделеева, используемый в производстве всех аккумуляторных батарей для современных мобильных телефонов, портативных компьютеров и электромобилей. При неправильной эксплуатации литий, содержащийся в аккумуляторах, может попасть в атмосферу, а также самопроизвольно вступать в реакции с кислородом в воздухе и воспламеняться.

Во всем мире применяются разные технологии по их переработке, в том числе с получением вторичных материалов. Одним из технологических этапов является криогенная обработка для снятия остаточного заряда, который может сохраниться в батарее, рассказал Forbes президент ГК Корпорация «ГазЭнергоСтрой» Сергей Чернин. После этого использованные батареи помещают в специальные мельницы, дробят и выделяют металлы (алюминий, медь и сталь), из которых они состоят. Затем из камер батарей извлекают литий путем помещения их в ванны с едкими соединениями, растворяющими соли лития, которые отфильтровывают и используют в производстве карбоната лития (применяется в пиротехнике, производстве стекол и пластмасс). А оставшиеся побочные продукты могут применяться для восстановления кобальта, входящего в состав электродов.

Стоимость переработки литиевых аккумуляторов в России, по данным «ГазЭнергоСтрой», составляет от 600 до 2000 рублей за килограмм. Но существующие способы пока не получили широкого распространения, в том числе из-за технологических особенностей, а также в связи с отсутствием массового спроса на данные услуги и формированием партий отходов, приемлемых для промышленной переработки.

Однако вопрос переработки с последующим использованием лития стоит довольно остро: если в 2011 году, по данным Геологической службы США (USGS), на источники тока расходовалось 27% добытого лития (при этом на первом месте было производство керамики и стекла — 29%), то в 2017 году на производство батарей и аккумуляторов ушло уже 46% всего металла. С ростом индустрии электромобилей эти показатели продолжат расти. По подсчетам USGS, в 2017 году в мире добыли 43 000 тонн лития из 53 млн тонн мировых запасов.

Вторая проблема — кобальт. Проректор по исследованиям «Сколтеха», директор Центра электрохимического хранения энергии профессор Кит Стивенсон в беседе с Forbes отметил, что возможно это еще более важный материал для возобновляемой энергетики, хотя обычно все обращают внимание только на литий. Кобальта на планете меньше — около 7 млн тонн, а добывать его сложнее: он почти не разрабатывается в чистом виде, а все месторождения содержат его в виде примесей к меди, никелю, мышьяку или серебру. На сегодняшний день 63% этого металла добываются в Демократической Республике Конго, где на приисках работают в основном дети, что создает этические проблемы для потребителей аккумуляторов.

По данным Международного энергетического агентства, к 2040 году число электромобилей в мире вырастет примерно до 40 млн. Если учитывать, что один аккумулятор для электромобиля может весить около 20 кг, то лишь на эту сферу уйдет 800 000 тонн кобальта. Сколько будет произведено к этому времени смартфонов и другой вычислительной техники, даже приблизительно трудно предсказать.

Стивенсон отметил, что только за последний год кобальт подорожал в 2,5 раза: цена выросла с $33 200 за тонну до $75 000. Крупнейшая в мире компания по добыче кобальта — швейцарская Glencore. Она добывает в год примерно столько же, сколько все независимые горняки, китайские компании, такие как China Molybdenum и Zhejiang Huayou, а также другие небольшие производители — около 30 000 тонн в год.

Однако, даже Glencore продает добытый металл китайским компаниям, которые, в свою очередь, перепродают его технологическим гигантам в виде аккумуляторов. Благодаря высокому спросу на аккумуляторы такого типа, Китай сумел установить контроль над мировым кобальтовым и литиевым рынками.

Альтернативы

В дальнейшем ситуация может только усугубиться, причем не только в экологическом, но и в экономическом плане. Поэтому ученые во всем мире пытаются предложить альтернативу. Есть как безаккумуляторные способы запасания энергии (например, подъем мешков с землей или закачка воды и получение энергии при последующем высвобождении их запасенной потенциальной энергии. Или новые виды аккумуляторов, но они еще в процессе разработки, и большинство из них также использует литий.

Одной из «зеленых» альтернатив аккумуляторам служат водородные двигатели. Использовав энергию солнца для разделения воды на кислород и водород, потом можно сжечь последний и вернуть затраченную энергию, а в качестве выхлопов будет только вода. Однако, пока это слишком затратный и недостаточно эффективный способ.

В настоящее время альтернативой могут служить кислотные и щелочные аккумуляторы, однако они нетехнологичны и еще менее экологичны: обладают существенно меньшим ресурсом и плотностью энергии, а значит большими габаритами и весом. Некоторые типы нелитиевых аккумуляторов негерметичны и требуют обслуживания или обладают длительным временем зарядки, требуют специального оборудования для аккумуляторных помещений. Такие батареи имеют в несколько раз меньший срок службы и при этом часто содержат в своем составе тяжелые металлы (к которым относится и кобальт). Еще одним элементом аккумуляторов будущего может стать никель: его больше (мировые запасы оцениваются в 300 млн тонн), и он (пока) дешевле ($12600 за тонну).

Создатели «Амстердам-Арены» рассчитывают, что когда аккумуляторы из системы хранения энергии отработают 10 лет, а к тому времени появятся более простые и безопасные технологии утилизации. Будет ли это возможность «перезарядки» этих аккумуляторов или многократное использование входящих в их состав металл, пока спрогнозировать сложно. Но стоит ожидать, что массовое распространение изделий с литиевыми источниками тока породит на рынке проекты по их эффективной переработке или экономически более выгодные системы хранения энергии.

www.forbes.ru

 

Читайте прогноз ценовых колебаний с 16 по 20 июля 2018.

Распечатать  /  отправить по e-mail  /  добавить в избранное

Ваш комментарий

Войдите на сайт, чтобы писать комментарии.

Подробнее на IDK-Эксперт:
http://exp.idk.ru/news/world/za-pyat-mesyacev-iran-zakupil-bolee-1-mln-tonn-risa/430444/
США при Трампе заблокировали активы россиян на «сотни миллионов долларов»
С момента прихода Дональда Трампа в Белый дом в январе 2017 года объем средств россиян, замороженных американскими властями, составил «сотни миллионов долларов», сообщается на сайте Минфина США.
Сотрудничество РФ и США на Аляске: от добычи нефти до транспорта
В США заинтересованы в участии российского бизнеса в проектах по добыче шельфового газа и нефти на Аляске, развитии транспортного сотрудничества